Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.859
1.
Funct Integr Genomics ; 24(3): 78, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38632141

Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Homeodomain Proteins , Laryngeal Neoplasms , Matrix Metalloproteinase 12 , Animals , Humans , Mice , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Head and Neck Neoplasms/genetics , Homeodomain Proteins/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Mice, Nude , Squamous Cell Carcinoma of Head and Neck/genetics
2.
Front Biosci (Landmark Ed) ; 29(3): 125, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38538265

BACKGROUND: The prevalence of laryngeal squamous cell carcinoma (LSCC) is increasing, and it poses a significant threat to human health; therefore, identifying specific targets for LSCC remains crucial. METHODS: Bioinformatics analysis was used to compare the different expression genes expressed in LSCC. Immunohistochemical assay and western blotting were used to analysis protein expression. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)((4,5 Dimethyl thiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide)4,5 Dimethyl thiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) and 5-ethynyl 2'-deoxyuridine (Edu) assay. Flow cytometry was used to measure the cell cycle. Cell migration was measured by wound healing assay and transwell assay. RESULTS: Our analysis revealed 36 upregulated and 65 downregulated differentially expressed genes (DEGs) when comparing LSCC tumors to adjacent tissues, with cornulin (CRNN) identified as a key hub gene connecting these DEGs. We observed a consistent downregulation of CRNN expression in LSCC cell lines and tissues and was associated with poor patient survival and the tumor microenvironment. CRNN overexpression was found to significantly inhibit cell growth, cell cycle progression, migration and invasion, while CRNN knockdown had the opposite effects. Additionally, in vivo experiments demonstrated that CRNN overexpression suppressed tumor growth in nude mice. CONCLUSIONS: CRNN functions as a potential tumor suppressor and regulates important aspects of LSCC, providing valuable insights into the role of CRNN in LSCC pathogenesis and potential for targeted therapeutic interventions.


Carcinoma, Squamous Cell , Laryngeal Neoplasms , MicroRNAs , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Bromides/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment
3.
Int J Mol Med ; 53(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38426543

Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor with a poor prognosis. Fascin actin­bundling protein 1 (FSCN1) has been reported to play a crucial role in the development and progression of LSCC; however, the underlying molecular mechanisms remain unknown. Herein, a whole transcriptome microarray analysis was performed to screen for differentially expressed genes (DEGs) in cells in which FSCN1 was knocked down. A total of 462 up and 601 downregulated mRNA transcripts were identified. Functional annotation analysis revealed that these DEGs were involved in multiple biological functions, such as transcriptional regulation, response to radiation, focal adhesion, extracellular matrix­receptor interaction, steroid biosynthesis and others. Through co­expression and protein­protein interaction analysis, FSCN1 was linked to novel functions, including defense response to virus and steroid biosynthesis. Furthermore, crosstalk analysis with FSCN1­interacting proteins revealed seven DEGs, identified as FSCN1­interacting partners, in LSCC cells, three of which were selected for further validation. Co­immunoprecipitation validation confirmed that FSCN1 interacted with prostaglandin reductase 1 and 24­dehydrocholesterol reductase (DHCR24). Of note, DHCR24 is a key enzyme involved in cholesterol biosynthesis, and its overexpression promotes the proliferation and migration of LSCC cells. These findings suggest that DHCR24 is a novel molecule associated with FSCN1 in LSCC, and that the FSCN1­DHCR24 interaction may promote LSCC progression by regulating cholesterol metabolism­related signaling pathways.


Carcinoma, Squamous Cell , Carrier Proteins , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Microfilament Proteins , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Actins/metabolism , Laryngeal Neoplasms/metabolism , Carcinoma, Squamous Cell/metabolism , Gene Expression Profiling , Head and Neck Neoplasms/genetics , Cholesterol , Oxidoreductases/genetics , Oxidoreductases/metabolism , Steroids , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation
4.
Cancer Lett ; 587: 216735, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38369001

As the second most prevalent malignant tumor of head and neck, laryngeal squamous cell carcinoma (LSCC) imposes a substantial health burden on patients worldwide. Within recent years, resistance to oxidative stress and N6-methyladenosine (m6A) of RNA have been proved to be significantly involved in tumorigenesis. In current study, we investigated the oncogenic role of m6A modified long non coding RNAs (lncRNAs), specifically HOXA10-AS, and its downstream signaling pathway in the regulation of oxidative resistance in LSCC. Bioinformatics analysis revealed that heightened expression of HOXA10-AS was associated with the poor prognosis in LSCC patients, and N (6)-Methyladenosine (m6A) methyltransferase-like 3 (METTL3) was identified as a factor in promoting m6A modification of HOXA10-AS and further intensify its RNA stability. Mechanistically, HOXA10-AS was found to play as a competitive endogenous RNA (ceRNA) by sequestering miR-29 b-3p and preventing its downregulation of Integrin subunit alpha 6 (ITGA6), ultimately enhancing the oxidative resistance of tumor cells and promoting the malignant progression of LSCC. Furthermore, our research elucidated the mechanism by which ITGA6 accelerates Keap1 proteasomal degradation via enhancing TRIM25 expression, leading to increased Nrf2 stability and exacerbating its aberrant activation. Additionally, we demonstrated that ITGA6 enhances γ-secretase-mediated Notch signaling activation, ultimately promoting RBPJ-induced TRIM25 transcription. The current study provides the evidence supporting the effect of m6A modified HOXA10-AS and its downstream miR-29 b-3p/ITGA6 axis on regulating oxidative resistance and malignant progression in LSCC through the Notch and Keap1/Nrf2 pathways, and proposed that targeting this axis holds promise as a potential therapeutic approach for treating LSCC.


Adenine/analogs & derivatives , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Homeobox A10 Proteins , Integrin alpha6 , Laryngeal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Head and Neck Neoplasms/genetics , Oxidative Stress , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , RNA, Long Noncoding/genetics , Methyltransferases/metabolism
5.
Cancer Immunol Res ; 12(5): 614-630, 2024 May 02.
Article En | MEDLINE | ID: mdl-38393971

Tumor-associated macrophages (TAM) induce immunosuppression in laryngeal squamous cell carcinoma (LSCC). The interaction between LSCC cells and TAMs affects the progression of laryngeal cancer through exosomes, but the underlying molecular mechanism remains unclear. Proteomics analysis of TAMs isolated from human laryngeal tumor tissues obtained from patients with confirmed lymphatic metastasis revealed an upregulation of annexin A3 (ANXA3). In TAMs, ANXA3 promoted macrophages to polarize to an M2-like phenotype by activating the AKT-GSK3ß-ß-catenin pathway. In addition, ANXA3-rich exosomes derived from TAMs inhibited ferroptosis in laryngeal cancer cells through an ATF2-CHAC1 axis, and this process was associated with lymphatic metastasis. Mechanistically, ANXA3 in exosomes inhibited the ubiquitination of ATF2, whereas ATF2 acted as a transcription factor to regulate the expression of CHAC1, thus inhibiting ferroptosis in LSCC cells. These data indicate that abnormal ANXA3 expression can drive TAM reprogramming and promote an immunosuppressive microenvironment in LSCC. Meanwhile, ANXA3-rich exosomes inhibit ferroptosis of LSCC cells and promote lymphatic metastasis, thus promoting tumor progression.


Annexin A3 , Exosomes , Ferroptosis , Laryngeal Neoplasms , Lymphatic Metastasis , Tumor-Associated Macrophages , Humans , Exosomes/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/immunology , Animals , Mice , Annexin A3/metabolism , Tumor Microenvironment/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/immunology , Cell Line, Tumor , Male
6.
Recent Pat Anticancer Drug Discov ; 19(2): 176-187, 2024.
Article En | MEDLINE | ID: mdl-38214357

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the most common cancer of head and neck cancer. Y-box binding protein-1 (YBX1) has tumor-promoting effects in some types of cancers. However, its role in LSCC remains unknown. This study set out to identify the role of YBX1 in LSCC. METHODS: Bioinformatics analysis of the Gene Expression Omnibus (GEO) database and our cohort data were used to explore the association of YBX1 expression with clinicopathological factors in LSCC. Then, cells with stably or transiently transfected with plasmid or siRNA were constructed to assess the effect of loss and gain of YBX1 on the biological phenotypes of LSCC cells in vitro. In addition, subcutaneous xenograft and orthotopic liver tumor mouse models were constructed for validation. The interrogated miRNA databases and subsequent luciferase reporter assays were used to confirm the miR-382-5p target of YBX1. At last, KEGG enrichment annotation from TGCA data was used for downstream analyses of miR-382-5p/YBX1 and verified by PCR and Western immunoblotting. RESULTS: The results showed that significant upregulation of YBX1 in LSCC tumors was correlated with advanced TNM stage and poor prognosis. Knockdown of YBX1 markedly impaired the proliferative, invasive, and migratory activity of Tu212 cells. We confirmed that miR-382-5p targets YBX1 to mediate LSCC progression both in vitro and in vivo. We further confirmed that miR-382-5p/YBX1 modulated the Ras/MAPK signaling axis to regulate the progression of LSCC. CONCLUSION: Together, our results indicated that YBX1 is an important promoter of LSCC progression. And miR-382-5p/YBX1/RAS/MAPK signaling pathway can be perceived as a promising target in the treatment of LSCC.


Laryngeal Neoplasms , MicroRNAs , Squamous Cell Carcinoma of Head and Neck , Y-Box-Binding Protein 1 , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
7.
Carcinogenesis ; 45(4): 220-234, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-36645203

Microfibril-associated glycoprotein-1 (MAGP1), a crucial extracellular matrix protein, contributes to the initiation and progression of different cancers. However, the role of MAGP1 in laryngeal cancer is not clear. The purpose of this study was to investigate the clinical significance and biological function of MAGP1 in laryngeal cancer. MAGP1 was upregulated in public databases and laryngeal cancer tissues, and high MAGP1 expression led to a poor prognosis and was identified as an independent prognostic marker. Knocking-down MAGP1 inhibited laryngeal cancer cell growth and metastasis. According to gene set enrichment analysis, high MAGP1 expression revealed enrichment in Wnt/ß-catenin signaling and knocking-down MAGP1 in laryngeal cancer cells also caused degradation, de-activation, re-location and loss of stability of ß-catenin. Additionally, we observed MAGP1 in laryngeal cancer cells inhibits angiogenesis in an MMP7-dependent way. In conclusion, our study suggests a clinical role of MAGP1 in laryngeal cancer, signifying its potential as a therapeutic target in the future.


Laryngeal Neoplasms , beta Catenin , Humans , Angiogenesis/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Wnt Signaling Pathway
8.
Cell Signal ; 114: 111002, 2024 02.
Article En | MEDLINE | ID: mdl-38048860

Laryngeal squamous cell carcinoma (LSCC) is one of the common malignant tumors in the head and neck region, and its high migration and invasion seriously threaten the survival and health of patients. In cancer development, m6A RNA modification plays a crucial role in regulating gene expression and signaling. This study delved into the function and mechanism of the m6A reading protein YTHDF1 in LSCC. It was found that YTHDF1 was highly expressed in the GEO database and LSCC tissues. Cell function experiments confirmed that the downregulation of YTHDF1 significantly inhibited the proliferation, migration, and invasion ability of LSCC cells. Further studies revealed that EIF4A3 was a downstream target gene of YTHDF1, and knockdown of EIF4A3 similarly significantly inhibited the malignant progression of LSCC in both in vivo and in vitro experiments. The molecular mechanism studies suggested that YTHDF1-EIF4A3 may promote the malignant development of LSCC by activating the EMT signaling pathway. This study provides important clues for an in-depth understanding of the pathogenesis of LSCC and is a solid foundation for the discovery of new therapeutic targets and approaches.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , DEAD-box RNA Helicases/metabolism , RNA-Binding Proteins/metabolism
9.
Eur J Med Res ; 28(1): 591, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38102653

BACKGROUND: Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS: We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS: Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS: TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , RNA/genetics , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Immunohistochemistry , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , RNA, Messenger/genetics , Head and Neck Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
10.
Cancer Biol Ther ; 24(1): 2274143, 2023 12 31.
Article En | MEDLINE | ID: mdl-37948132

Laryngeal squamous cell carcinoma (LSCC), is a prevalent malignant tumor, belongs to the category of head and neck tumors. N-acetyltransferase 10 (NAT10) can alter mRNA stability through N4- acetylcytidine (ac4C) modification. This study aimed to make an investigation into the role of NAT10-mediated ac4C modification in the malignant processes of LSCC cells. The NAT10 expression in LSCC tissues and cells was detected RT-qPCR and western blot. The ac4C dot blot was performed to detect ac4C level. Besides, the cell viability, migration, and invasion abilities were detected by CCK-8 and transwell assays. AcRIP-qPCR was performed to measure the abundance of ac4C on FOXM1 mRNA. RIP and Luciferase reporter assays were performed to demonstrate the interaction between NAT10 and FOXM1. Finally, the xenograft model was established to explore the role of NAT10 in vivo. NAT1 levels were significantly increased in the LSCC tissues and cells. Knockdown of NAT10 could significantly suppress the proliferation, migration, and invasion of LSCC cells. Additionally, NAT10 recognized the ac4C-modified sites in the 3'-untranslated regions (3' UTR) of forkhead box M1 (FOXM1) to enhance the ability of FOXM1 mRNA. Furthermore, FOXM1 overexpression reversed the suppressing effects of NAT10 knockdown on the proliferation, migration, and invasion of LSCC cells, according to the results of rescue assays. Finally, results of animal experiments showed that NAT10 promoted in vivo tumorigenesis of LSCC cells through upregulating FOXM1. Our current study demonstrated that NAT10-mediated ac4C modification of FOXM1 mRNA promoted the malignant processes of LSCC cells.


Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Animals , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Laryngeal Neoplasms/metabolism , Cell Line, Tumor , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Forkhead Box Protein M1/genetics , N-Terminal Acetyltransferases
11.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article En | MEDLINE | ID: mdl-37834257

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may increase the risk of cancer development and a poor cancer prognosis. TAMs of the M2 phenotype, together with the intermittent hypoxic environment within the tumor, drive tumor aggressiveness. However, the mechanism of TAMs in IH remains unclear. In our study, IH induced the recruitment of macrophages, and IH-induced M2-like TAMs promoted glycolysis in laryngeal cancer cells through hexokinase 1. The hexokinase inhibitor 2-deoxy-D-glucose and HK1 shRNA were applied to verify this finding, confirming that M2-like TAMs enhanced glycolysis in laryngeal cancer cells through HK1 under intermittent hypoxic conditions. Comprehensive RNA-seq analysis disclosed a marked elevation in the expression levels of the transcription factor ZBTB10, while evaluation of a laryngeal cancer patient tissue microarray demonstrated a positive correlation between ZBTB10 and HK1 expression in laryngeal carcinoma. Knockdown of ZBTB10 decreased HK1 expression, and overexpression of ZBTB10 increased HK1 expression in both laryngeal cancer cells and 293T cells. The luciferase reporter assay and Chromatin immunoprecipitation assay confirmed that ZBTB10 directly bound to the promoter region of HK1 and regulated the transcriptional activity of HK1. Finally, the CLEC3B level of the M2 supernatant is significantly higher in the IH group and showed a protumor effect on Hep2 cells. As ZBTB10-mediated regulation of HK1 affects glycolysis in laryngeal cancer, our findings may provide new potential therapeutic targets for laryngeal cancer.


Glycolysis , Hexokinase , Laryngeal Neoplasms , Repressor Proteins , Sleep Apnea, Obstructive , Humans , Hexokinase/genetics , Hexokinase/metabolism , Hypoxia , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Repressor Proteins/metabolism , RNA, Small Interfering/metabolism , Sleep Apnea, Obstructive/complications
12.
Folia Histochem Cytobiol ; 61(3): 183-192, 2023.
Article En | MEDLINE | ID: mdl-37787034

INTRODUCTION: In this study we analyzed CD105 (endoglin) and E-cadherin expression in laryngeal squamous cell carcinoma (LSCC) to evaluate their clinicopathologic significance. MATERIAL AND METHODS: Expression of CD105 and E-cadherin was examined immunohistochemically using paraffin-embedded archival tissues of 72 (35 glottic and 37 supraglottic) previously untreated LSCC male patients. The mean value of the positively-stained microvessels for CD105 counted in four hot spots for each case was used as the final intratumoralmicrovessel density (MVD). A staining score of E-cadherin was calculated based on the percentage of cells stained (0-100%). RESULTS: MVD was significantly higher in patients with advanced TNM stage (P = 0.004) and younger than 65 (P = 0.008). Nodal metastases were more frequent in the cases with low E-cadherin expression (P = 0.000). Tumor recurrence was associated with advanced TNM stage (P = 0.035) and high MVD (P = 0.002). A high MVD was an independent predictor of malignancy recurrence (P = 0.021). The log-rank test showed a significant difference in the disease-free interval in patients stratified according to the MVD value (P = 0.016). Spearman's rank correlation test did not show a significant correlation between E-cadherin and CD105 expression. CONCLUSIONS: CD105-assessed MVD and expression of E-cadherin are promising prognostic factors for the outcome of patients with LSCC. Increased expression of CD105 could help predict patients with an increased risk of developing loco-regional recurrence after surgical treatment. Decreased E-cadherin expression is a potential predictor of lymph node metastases.


Carcinoma, Squamous Cell , Laryngeal Neoplasms , Humans , Male , Biomarkers, Tumor/metabolism , Cadherins , Endoglin , Laryngeal Neoplasms/diagnosis , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Receptors, Cell Surface/metabolism
13.
Tissue Cell ; 84: 102187, 2023 Oct.
Article En | MEDLINE | ID: mdl-37536262

Laryngeal squamous cell carcinoma (LSCC) is the second most common head and neck cancer. To identify the link between ferroptosis and LSCC, we targeted the dual oxidase 1 (DUOX1) gene. This study aimed to reveal the intrinsic mechanism by which the DUOX1-zinc-finger CCCH domain-containing protein 13 (ZC3H13) ferroptosis axis affected the LSCC process. GEPIA was used to investigate the expression of DUOX1 in LSCC, and the expression levels of DUOX1 and ZC3H13 were manipulated by overexpression and RNA interference. MTT assay was used to detect cell proliferation. Chromatin immunoprecipitation (CHIP) detected the binding of DUOX1 and ZC3H13, and ROS assessment and intracellular Fe2+ content determination were performed to examine the ferroptosis. MeRIP was used to analyze the m6A methylation of DUOX1. Ferroptosis-related proteins were detected by qRT-PCR. DUOX1 was found to be poorly expressed in LSCC cells, low DUOX1 level promoted LSCC cell proliferation, and low ZC3H13 level decreased LSCC cell proliferation. Besides, there was an interaction between DUOX1 and ZC3H13. DUOX1 could inhibit the expression levels of ferroptosis-related genes GPX4 and F1H1 in LSCC cells DUOX1 inhibited the expression levels of ROS and ferroptosis-related genes GPX4 and F1H1 and increased intracellular iron content in LSCC cells, but ZC3H13 reversed this phenomenon by inhibiting DUOX1 gene through m6A methylation modification. ZC3H13 reduced DUOX1-mediated ferroptosis in LSCC cells through m6A-dependent modification. The regulatory pathway of DUOX1 and ferroptosis are potential targets for designing diagnostic and combination therapeutic strategies for LSCC patients.


Carcinoma, Squamous Cell , Ferroptosis , Head and Neck Neoplasms , Laryngeal Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Dual Oxidases/genetics , Dual Oxidases/metabolism , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/metabolism , Nuclear Proteins/metabolism , Reactive Oxygen Species/metabolism , RNA-Binding Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
14.
Mol Biol Rep ; 50(9): 7245-7252, 2023 Sep.
Article En | MEDLINE | ID: mdl-37418079

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is the major pathological subtype of laryngeal cancer. It has been shown that alterations of the expression of non-classical human leukocyte antigens (HLA) and the chain-related MIC molecules by malignant cells can lead to escape from the immune system control and certain allele variants may participate in immune editing and therefore be associated with modulation of cancer risk. The aim of the present study was to investigate the role of non-classical HLA class Ib and chain-related MIC polymorphisms, determined at the allelic level by next-generation sequencing (NGS), in patients from the Bulgarian population, diagnosed with LSCC. MATERIALS AND METHODS: In the present study DNA samples from 48 patients with LSCC were used. Data was compared to 63 healthy controls analysed in previous studies. HLA genotyping was performed by using the AlloSeq Tx17 early pooling protocol and the library preparation AlloSeq Tx17 kit (CareDx). Sequencing was performed on MiniSeq sequencing platform (Illumina) and HLA genotypes were assigned with the AlloSeq Assign analysis software v1.0.3 (CareDx) and the IPD-IMGT/HLA database 3.45.1.2. RESULTS: The HLA disease association tests revealed a statistically significant predisposing association of HLA-F*01:01:02 (Pc = 0.0103, OR = 24.0194) with LSCC, while HLA-F*01:01:01 (Pc = 8.21e-04, OR = 0.0485) has a possible protective association. Additionally we observed several haplotypes with statistically significant protective and predisposing associations. The strongest association was observed for F*01:01:01-H*01:01:01 (P = 0.0054, haplotype score=-2.7801). CONCLUSION: Our preliminary study suggests the involvement of HLA class Ib in cancer development and the possible role of the shown alleles as biomarkers of LSCC.


Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Histocompatibility Antigens Class II/genetics , Polymorphism, Genetic/genetics , HLA Antigens/genetics , Histocompatibility Antigens Class I/genetics , Haplotypes/genetics , Head and Neck Neoplasms/genetics , Alleles , Gene Frequency/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism
15.
Int J Biol Sci ; 19(5): 1382-1400, 2023.
Article En | MEDLINE | ID: mdl-37056932

Translation machinery associated 7 homolog (TMA7) is closely related to proliferation-related diseases. However, the function and regulatory mechanism of TMA7 in laryngeal squamous cell carcinoma (LSCC) remain unclear. The present study aimed to investigate the effect of TMA7 on the occurrence and development of LSCC and to study the mechanism of TMA7. TMA7 is upregulated in LSCC tissues and associated with poor prognosis. After TMA7 downregulation, the autophagy level was increased, and the proliferation, migration, and invasion of LSCC cells were inhibited. The m6A methylated reader IGF2BP3 enhanced the stability of TMA7 and reduced the level of autophagy. TMA7 interacted directly with UBA2. Furthermore, the activation of the IGF2BP3-regulated TMA7-UBA2-PI3K pathway is the primary mechanism by which TMA7 inhibits autophagy and promotes the progression of LSCC. The current study revealed that IGF2BP3-mediated TMA7 m6A modification promotes LSCC progression and cisplatin-resistance through UBA2-PI3K pathway, providing new insights into the autophagy-related mechanism, potential biomarkers, and therapeutic targets for LSCC.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Humans , Autophagy/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gene Expression Regulation, Neoplastic/genetics , Head and Neck Neoplasms/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Methylation , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , RNA-Binding Proteins/metabolism
16.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article En | MEDLINE | ID: mdl-36675308

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium in the oral cavity, pharynx, sino-nasal region, and larynx. Laryngeal squamous cell carcinoma (LSCC) represents one-third of all head and neck cancers. Dysregulated RNA-related pathways define an important molecular signature in this aggressive carcinoma. The Survival Motor Neuron (SMN) protein regulates fundamental aspects of the RNA metabolism but, curiously, its role in cancer is virtually unknown. For the first time, here, we focus on the SMN in the cancer context. We conducted a pilot study in a total of 20 patients with LSCC where the SMN was found overexpressed at both the protein and transcript levels. By a cellular model of human laryngeal carcinoma, we demonstrated that the SMN impacts cancer-relevant behaviors and perturbs key players of cell migration, invasion, and adhesion. Furthermore, in LSCC we showed a physical interaction between the SMN and the epidermal growth factor receptor (EGFR), whose overexpression is an important feature in these tumors. This study proposes the SMN protein as a novel therapeutic target in LSSC and likely in the whole spectrum of HNSCC. Overall, we provide the first analysis of the SMN in human cancer.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/pathology , Pilot Projects , Head and Neck Neoplasms/genetics , Laryngeal Neoplasms/metabolism , RNA , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
17.
Biomed Res Int ; 2023: 1733100, 2023.
Article En | MEDLINE | ID: mdl-36718148

Laryngeal squamous cell cancer (LSCC) is a common malignant tumor with a high degree of malignancy, and its etiology remains unclear. Therefore, screening potential biomarkers is necessary to facilitate the treatment and diagnosis of LSCC. Robust rank aggregation (RRA) analysis was used to integrate two gene expression datasets of LSCC patients from the Gene Expression Omnibus (GEO) database and identify differentially expressed genes (DEGs) between LSCC and nonneoplastic tissues. A gene coexpression network was constructed using weighted gene correlation network analysis (WGCNA) to explore potential associations between the module genes and clinical features of LSCC. Combining differential gene expression analysis and survival analysis, we screened potential hub genes, including CDK1, SPC24, HOXB7, and SELENBP1. Subsequently, western blotting and immunohistochemistry were used to test the protein levels in clinical specimens to verify our findings. Finally, four candidate diagnostic and prognostic biomarkers (CDK1, SPC24, HOXB7, and SELENBP1) were identified. We propose, for the first time, that SPC24 is a gene that may associate with LSCC malignancy and is a novel therapeutic target. These findings may provide important mechanistic insight of LSCC.


Head and Neck Neoplasms , Laryngeal Neoplasms , Neoplasms, Squamous Cell , Humans , Laryngeal Neoplasms/diagnosis , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Prognosis , Squamous Cell Carcinoma of Head and Neck/diagnosis , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Cell Cycle/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Microtubule-Associated Proteins/genetics , Homeodomain Proteins/genetics
18.
Mol Biotechnol ; 65(4): 655-667, 2023 Apr.
Article En | MEDLINE | ID: mdl-36214976

LINC00467 was reported as an oncogenic gene in different types of human cancers. In this study, we investigated the molecular mechanisms of LINC00467 in the tumorigenesis of laryngeal squamous cell cancer (LSCC). RT-qPCR was utilized to detect the mRNA expression of genes, and western blot assay was used to determine the protein levels of TNF alpha-induced protein 3 (TNFAIP3). The cell viability was detected by CCK-8 assay. Transwell assays were conducted to determine the cell migration and invasion of LSCC cells, and the cell cycle was assessed by flow cytometry. The association between paired box 5 (PAX5), LINC00467, miR-4735-3p, and TNFAIP3 was verified using ChIP, RNA pull-down, or luciferase reporter assays. In our study, we found that LINC00467 was upregulated in LSCC, and knockdown of LINC00467 suppressed cell viability and metastasis of LSCC. Besides, LINC00467 transcription could be activated by PAX5 in LSCC. Furthermore, LINC00467 acted as competitive endogenous RNA (ceRNA) for miR-4735-3p to accelerate LSCC progression. In the meantime, TNFAIP3 was identified as a downstream gene of miR-4735-3p. Finally, TNFAIP3 overexpression could overturn the effects of miR-4735-3p mimic on LSCC cellular activities. In conclusion, our results demonstrated that PAX5-induced LINC00467 facilitated LSCC progression by inhibiting miR-4735-3p to increase TNFAIP3 expression.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Up-Regulation , Tumor Necrosis Factor-alpha/genetics , Carcinoma, Squamous Cell/metabolism , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Cell Line, Tumor , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
19.
Pathol Res Pract ; 241: 154229, 2023 Jan.
Article En | MEDLINE | ID: mdl-36509010

Advanced laryngeal squamous cell carcinoma (LSCC) has a high mortality rate, and the prognosis is poor. However, the underlying molecular biological mechanisms bringing about the development and progression of advanced LSCC are not entirely clarified. This study aimed to find out the potential biomarkers to predict the prognosis in advanced LSCC patients who had undergone postoperative radiotherapy alone. The next-generation sequencing of RNA was performed to detect the mRNAs expression profiling in 10 advanced LSCC samples, comprised of 5 samples from LSCC patients with favorable outcome and 5 samples from paired patients with poor outcome. Then bioinformatics analysis including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to find out functional core genes that were significantly different between the two groups. 1630 differentially expressed genes (DEGs) were confirmed to have significant differences between the two groups. 53 GO terms and 19 pathways which were closely related to the DEGs were identified. Finally, 52 intersection DEGs which were both related to the top three GO terms and pathways were identified. The expression of several core genes was confirmed with RT-qPCR in tissues from another 75 patients. RT-qPCR confirmed that the genes of c-JUN, LYN, PIK3R2, and TNFAIP3 were significantly differentially expressed between the two groups, which was in accordance with the RNA sequencing data. The DEGs identified above may be potential prognostic markers for advanced LSCC patients with postoperative radiotherapy, and may provide essential guidance for following-up.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Prognosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/metabolism , Gene Expression Profiling , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/radiotherapy , Laryngeal Neoplasms/metabolism , Gene Regulatory Networks , Head and Neck Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
20.
Curr Pharm Des ; 29(43): 3467-3477, 2023.
Article En | MEDLINE | ID: mdl-38163971

BACKGROUND: Growth differentiation factor-10 (GDF-10), a member of the TGF-ß superfamily, plays a crucial role in cell proliferation and differentiation. In some tumors, GDF-10 can act as a tumor suppressor to inhibit tumor progression, but its role in posterior squamous cell carcinoma has not been reported yet. METHODS: The aim of this study was to investigate the effect of GDF-10 on the epithelial-mesenchymal transition of laryngeal squamous cell carcinoma, and to provide new ideas for future targets in the treatment of laryngeal squamous carcinoma. RESULTS: The effect of GDF-10 on tumor growth was detected; bioinformatics analysis was performed to predict the downstream targets of GDF-10, and RT-PCR and western blot were performed to detect the expression levels of target genes and proteins, respectively. CONCLUSION: Our findings support that GDF-10 can inhibit the proliferation, migration, and invasion, and promote apoptosis of laryngeal carcinoma AMC-HN-8 cells. GDF-10 inhibits the EMT of laryngeal carcinoma through LRP4 and thus inhibits the progression of laryngeal carcinoma.


Carcinoma, Squamous Cell , Laryngeal Neoplasms , Humans , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Growth Differentiation Factor 10/genetics , Growth Differentiation Factor 10/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Transforming Growth Factor beta/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic
...